

Fermilab Testbeam Results for 500 µm pitch AC-LGADs

Christopher Madrid eRD112/LGAD Consortium Meeting August 3, 2022

Future trackers will be 4D!

- The 4D-trackers will play a key role at the future machines
 - Reduce backgrounds, track reconstruction, triggering will need precision timing information in addition to precision position
 - Enhanced capabilities: PID and LLP reconstruction
 - All of these pose unique challenges, and opportunities to detector and electronics design, and event reconstruction

Measurement	Technical requirement	
Tracking for e+e-	Granularity: 25x50 μm² pixels	
	5 μm single hit resolution	
	Per track resolution of 10 ps	
Tracking for 100 TeV pp	Generally the same as e+e-	
	Radiation toleran up to 8x10 ¹⁷ n/cm ²	
	Per track resolution of 5 ps	

Technical requirements for future trackers:

from DOE's HEP BRN

Fermilab 4D-trackers test beam infrastructure

- Permanent setup in FNAL test beam facility (FTBF)
 - Movable: slide in and out of beamline as needed, parasitic use of beam
 - Environmental controls: sensor temperature (-25 C to 20 C), and humidity, monitoring
 - Remote control (stages, HV, LV), logging & reconstruction; $\sigma T \sim 10$ ps time reference (MCP)
 - Cold operation of up to 10 prototypes at the same time
 - DAQ: high bandwidth, high ADC resolution scope 8-channel scope
 - Record 100k events per minute, tracker with ~5 μm resolution
- Developed readout boards for the characterization of LGADs
 - Without complicated ASIC and DAQ

Scope

Testbeam Sensors Overview

- Showing results for sensors that could meet EIC requirements
 - Only showing a small fraction of the sensors tested at both testbeam campaigns

Pixels

- Studied 2x2 4-channel 500x500 μm² pixels manufactured by HPK with 50 μm thickness of active volume
- Mostly covered in metal
- Results detailed in a paper published early this year based on 2021 testbeam data
- Further sensor design optimizations planned for future productions, e.g. changing metal size and resistive layer

Long Strips

- Studied 3 strip length variation (5, 10, and 25 mm) manufactured by BNL with 50 μm thickness of active volume
- Constant pitch (500 μm) and metal width (200 μm)
- Preliminary results based on testbeam data from March 2022
 - Main goal is to study impact of large geometry on AC-LGAD performance
 - Paper with detailed results coming soon

Test beam results: HPK Pixels

- We have sensors from KEK and U. of Tsukuba that are fabricated at HPK
- Here we have a 2x2 pad sensor with 500 μm size pads
- The overall performance we observe is great:
 - 100% efficient, primary signal size are large (~128 mV), and signal sharing extends well into neighboring channel
- Show effects of signal sharing in 2 dimensions by looking at the signal size for hits to the top left pad

Test beam results: HPK Pixels

- Time resolution measured to be 30 ± 1 ps and uniform over sensor
- Position resolution ranges from 15 40 µm depending on location
 - Overall is measured to be 22 \pm 1 μ m
- Future productions optimizing metal and increasing the number of channels is planned

HPK 2x2, 500 µm pad size

Testbeam Results: BNL Long Strips

10 mm 25 mm

- Studied impact of sensor length on AC-LGAD performance
 - Realistic channel size
 - Expect sensor capacitance to increase and impact performance
- Readout 7 channels at a time
- Wirebonded alternating left and right ends of strips
 - Expect to help mitigate propagation time delay impact on performance

Testbeam Results: BNL Long Strips

- BNL sensors suffered from gain non-uniformity
- Known issue for BNL production and solution understood for next production
 - We do not see the same issue with the HPK sensors so this is not a long term problem for LGADs
- Makes getting a single time resolution value difficult (Measure hot spot)
- Position reconstruction measurement not directly impacted (amplitude ratio method)
- · Length of strips introduce significant time delay as a function of hit position
 - Calibration needed to account of delay (Track information)

Testbeam Results: BNL Long Strips

- 2-strip reconstruction not 100% outside of metal
- Can be mitigated with smaller metal
- Resolution on metal is metal size / sqrt(12)
- Metal size of ~80 μm recovers uniform performance
- Position resolution factor of 10 better than binary readout
- Using time delay tracking info can recover good timing resolution

10 mm 5 mm 25 mm

Track x position [mm]

Track x position [mm]

EIC W1 1cm, 255V

Summary

- Showing results for a handful of tested sensors
 - Paper detailing all long strip results and further design optimization coming soon
- Current AC-LGAD designs approaching EIC requirements
- Next productions of sensors will address the remaining optimization
 - BNL gain uniformity
 - Solution understood
 - Optimizing signal sharing
 - Changing metal size
 - Realistic size
 - Thinner active volume

	Time resolution / hit	Position resolution / hit	Material budget / layer
Barrel ToF (Tracker)	<30 ps	$(3-30 \ \mu m \text{ for Tracker})$	$< 0.01 X_0$
Endcap ToF (Tracker)	<25 ps	$(30-50 \ \mu m \ \text{for Tracker})$	e-direction $< 0.05X_0$
			h-direction $< 0.15X_0$
Roman Pots	<50 ps	$< 500/\sqrt{12} \; \mu m$	N/A
B0	<50 ps	$O(50) \mu m$	$< 0.01 X_0$

https://wiki.bnl.gov/conferences/index.php/ProjectRandDFY22

Preliminary Results	Time Resolution / hit	Position Resolution / hit
HPK-C2 Pixels 500 x 500 μm ²	30 ± 1 ps	22 ± 1 μm
BNL Strips 500 µm x 5 mm	~ 30 ps (Hot spots)	< 15 μm
BNL Strips 500 µm x 10 mm	~ 32 ps (Hot spots)	< 20 µm
BNL Strips 500 µm x 25 mm	~ 53 ps (Hot spots)	< 40 µm

Backup

AC-coupled LGADs

- DC-LGADs are a promising sensor for timing detectors
 - Although, they have an issue with their fill factor when pixels are small enough for a realistic tracker

- AC-LGADs can solve this issue
 - 100% fill factor, and fast timing information at a per-pixel level
 - Electrons collect at the resistive n+ and then slowly flow to an ohmic contact at the edge.
 - Simultaneously improve position resolution via charge

